Gain-Free Square Root Information Filtering Using the Spectral Decomposition

نویسنده

  • Yaakov Oshman
چکیده

A new square root state estimation algorithm is introduced, that operates in the information mode in both the time and the measurement update stages. The algorithm, called the V-Lambda filter, is based on the spectral decomposition of the covariance matrix into a V\V form, where V is the matrix whose columns are the eigenvectors of the covariance matrix, and A is the diagonal matrix of its eigenvalues. The algorithm updates a normalized state estimate along with the information matrix square root factors, thus doing away with the gain computation. Both stages of the filter constitute equation-free algorithms and thus ideally suit parallel processing implementations. Singular value decomposition is used as a sole computational tool in both the eigenvectors/eigenvalues and the normalized state estimate updates, rendering a complete estimation scheme with exceptional numerical stability and precision. The distinct square root nature of the new algorithm is demonstrated numerically via a typical example, which compares the performance of the V-Lambda filter to that of the corresponding conventional Kalman algorithm. Belonging to the class of square root estimation algorithms, the new filter has all the virtues of a true square root routine. However, the new formulation also provides its user with invaluable insight into the heart of the estimation process, which is a unique characteristic of the V-Lambda filters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square root filtering via covariance and information eigenfactors

-Two new square root Kalman filtering algorithms are presented. Both algorithms are based on the spectral V A of the covariance matrix where V is the matrix whose columns are the eigenvectors of the covariance and A is the diagonal matrix of its eigenvalues. The algorithms use the covariance mode in the time propagation stage and the information mode in the measurement update stage. This switch...

متن کامل

Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation

This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system.  In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...

متن کامل

Detecting buried channels using linear least square RGB color stacking method based on deconvolutive short time Fourier transform

Buried channels are one of the stratigraphic hydrocarbon traps. They are often filled with a variety of porous and permeable sediments so they are important in the exploration of oil and gas reservoirs. In reflection seismic data, high-frequency components are sensitive to the channel thickness, whereas, low-frequency components are sensitive to the channel infill materials. Therefore, decompos...

متن کامل

Square-root information filtering and fixed-interval smoothing with singularities

The square-root information filter and smoother algorithms have been generalized to handle singular state transition matrices and perfect measurements. This has been done to allow the use of SRIF techniques for problems with delays and state constraints. The generalized algorithms use complete QR factorization to isolate deterministically known parts of the state and nonsingular parts of the st...

متن کامل

Sensor Fusion with Square-Root Cubature Information Filtering

This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003